3 research outputs found

    Cyclooxygenase Inhibition Limits Blood-Brain Barrier Disruption following Intracerebral Injection of Tumor Necrosis Factor-alpha in the Rat

    Get PDF
    Increased permeability of the blood-brain barrier (BBB) is important in neurological disorders. Neuroinflammation is associated with increased BBB breakdown and brain injury. Tumor necrosis factor-alpha (TNF-a) is involved in BBB injury and edema formation through a mechanism involving matrix metalloproteinase (MMP) upregulation. There is emerging evidence indicating that cyclooxygenase (COX) inhibition limits BBB disruption following ischemic stroke and bacterial meningitis, but the mechanisms involved are not known. We used intracerebral injection of TNF-a to study the effect of COX inhibition on TNF-a-induced BBB breakdown, MMP expression/activity and oxidative stress. BBB disruption was evaluated by the uptake of 14C-sucrose into the brain and by magnetic resonance imaging (MRI) utilizing Gd-DTPA as a paramagnetic contrast agent. Using selective inhibitors of each COX isoform, we found that COX-1 activity is more important than COX-2 in BBB opening. TNF-a induced a significant upregulation of gelatinase B (MMP-9), stromelysin-1 (MMP-3) and COX-2. In addition, TNF-a significantly depleted glutathione as compared to saline. Indomethacin (10 mg/kg; i.p.), an inhibitor of COX-1 and COX-2, reduced BBB damage at 24 h. Indomethacin significantly attenuated MMP-9 and MMP-3 expression and activation, and prevented the loss of endogenous radical scavenging capacity following intracerebral injection of TNF-a. Our results show for the first time that BBB disruption during neuroinflammation can be significantly reduced by administration of COX inhibitors. Modulation of COX in brain injury by COX inhibitors or agents modulating prostaglandin E2 formation/signaling may be useful in clinical settings associated with BBB disruption

    Differential Effects of HIF-1 Inhibition by YC-1 on the Overall Outcome and Blood-Brain Barrier Damage in a Rat Model of Ischemic Stroke

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1) is a master regulator of cellular adaptation to hypoxia and has been suggested as a potent therapeutic target in cerebral ischemia. Here we show in an ischemic stroke model of rats that inhibiting HIF-1 and its downstream genes by 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1) significantly increases mortality and enlarges infarct volume evaluated by MRI and histological staining. Interestingly, the HIF-1 inhibition remarkably ameliorates ischemia-induced blood-brain barrier (BBB) disruption determined by Evans blue leakage although it does not affect brain edema. The result demonstrates that HIF-1 inhibition has differential effects on ischemic outcomes and BBB permeability. It indicates that HIF-1 may have different functions in different brain cells. Further analyses show that ischemia upregulates HIF-1 and its downstream genes erythropoietin (EPO), vascular endothelial growth factor (VEGF), and glucose transporter (Glut) in neurons and brain endothelial cells and that YC-1 inhibits their expression. We postulate that HIF-1-induced VEGF increases BBB permeability while certain other proteins coded by HIF-1's downstream genes such as epo and glut provide neuroprotection in an ischemic brain. The results indicate that YC-1 lacks the potential as a cerebral ischemic treatment although it confers certain protection to the cerebral vascular system
    corecore